Fluid Bed Technology: Overview and Parameters for Process Selection
نویسندگان
چکیده
Formulation development is the most emerging and upcoming face of pharmaceutical technology in the current era. It is contemporarily capturing the market leaps and bounds with recent trends and developments with its innovative techniques. The day-to-day advancements in the research have provided an edge to this brilliant branch of pharmaceutical sector for not only uplifting the pharmacy profession but also to conquer the diseased state for nurturing the health and humanity. The fluid-bed technology or air-suspension process is the potential tool to develop newer trends and implications in the sector of formulation development with maximum therapeutic efficacy. The technology is used for granulation/agglomeration, layering and coating of a wide range of particle size. In addition; the technique can be used for the drying process as well. The three patterns of the fluid-bed processes could be characterized by the position/location of the spray nozzle i.e. top spray, bottom spray or tangential spray. This article reviews the three techniques with some innovative fluid bed pelletizing technologies like CPSTM, MicroPxTM, ProCellTM and discusses their applications, advantages and limitations. These advanced pelletizing technologies are recentely added to complement the actual capabilities of standard fluid bed processing for development of various dosage forms of “Multiple Unit Particulate Systems” (MUPS) with better therapeutic efficacy and economic benefits.
منابع مشابه
Improvement of Hydrodynamics Performance of Naphtha Catalytic Reforming Reactors Using CFD
Due to high applicability of the fixed bed catalytic naphtha reforming reactors, hydrodynamic features of this kind of reactors with radial flow pattern are improved in this work by utilising computational fluid dynamics technique. Effects of catalytic bed porosity, inlet flow rate and flow regime through the bed on the flow distribution within the system are investigated.It is found that t...
متن کاملA Decision Tree for Technology Selection of Nitrogen Production Plants
Nitrogen is produced mainly from its most abundant source, the air, using three processes: membrane, pressure swing adsorption (PSA) and cryogenic. The most common method for evaluating a process is using the selection diagrams based on feasibility studies. Since the selection diagrams are presented by different companies, they are biased, and provide unsimilar and even controversial results. I...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملCFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor
A computational fluid dynamic (CFD) study of methanol (MeOH) to dimethyl ether (DME) process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MAT...
متن کاملEffect of Filter Inhomogeneity on Deep-Bed Filtration Process – A CFD Investigation
Aerosol filtration in fibrous filters is one of the principal methods of removal of solid particles from the gas stream. The classical theory of depth filtration is based on the assumption of existing single fiber efficiency, which may be used to the recalculation of the overall efficiency of the entire filter. There are several reasons for inappropriate estimation of the single fi...
متن کامل